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Abstract-A general numerical model of microsegregation and solidification in coarsening (i.e. expanding) 
secondary dendrite arms is developed. General governing equations representing the diffusive heat and 
mass transfer in an expanding domain are presented. The governing equations are transformed using 
enthalpy type variables (to deal with the moving solidification interface s(r)) and a Landau transformation 
(to deal with the expanding domain X(r)). This transformation allows for a fixed grid ‘node jumping’ 
numerical solution. The resulting solutions compare favorably with existing experiments and require only 

a fraction of the CPU time of alternative approaches. 

1. INTRODUCTION 

SOLIDIFICATION phenomena occur across a wide range 
of length scales, a feature reflected in the modeling of 
solidification systems. In general, models of solidi- 
fication systems can be placed into one of three 
classes. 

Macro. Models at the macroscopic level emphasize 
the heat and mass transfer mechanisms and are 
designed to predict the large scale features of a solidi- 
fication process, e.g. solidification time, species 
transport, etc. In such models, however, it is impor- 
tant to recognize that macroscopic solidification 
events are often driven by the microscopic phenom- 
ena. Recent macro solidification models [IN] attempt 
to represent appropriate microscopic behavior with 
suitable constitutive relationships. 

Micro-macro. In ‘micro-macro’ modeling [WI the 
aim is the prediction of microstructure using micro- 
scopic growth and nucleation models. These models 
require a cooling rate as an input. Appropriate cooling 
rates are predicted from a macroscopic heat transfer 
model. 

Micro. Many solidification models are purely 
microscopic models, on the scale of the dendrite arms 
in the solid/liquid mushy zone, in which macroscopic 
features are neglected [8-151. 

The emphasis in this paper is on the development 
of a microscopic solidification model. Such models (1) 
can provide important insight (and often quantitative 
predictions) of microscopic behavior and (2) can be 
used as the micro component in a micro-macro model 
or as the basis of a constitutive equation in a macro 
model. Recent micro solidification models appearing 
in the literature are directed at the analysis of 
microsegregation (micro-compositional variation) in 
conjunction with coarsening of the secondary den- 
dritic arms [12-151. These models predict the micro- 

structure (final secondary arm spacing) and the 
microsegregation (characterized by the amount of 
eutectic formed). The development of a micro- 
segregation arm coarsening model is the aim of this 
paper. 

2. THE BINARY ALLOY PROBLEM IN AN 

EXPANDING DOMAIN 

2.1. The microsegregalion problem 

A feature in the solidification of binary alloys is the 
formation of a solid + liquid mushy zone. The solid 
crystals in the mushy zone commonly have a columnar 
morphology, consisting of primary and secondary 
dendrites [16], see Fig. 1. The length scale in this 
morphology is characterized by the secondary den- 
drite arm spacing typically of the order of tens of 
microns. As this binary alloy solidifies the rejected 
solutal phase diffuses within the dendrite spacings ; a 
process referred to as microsegregation. The nature 
of this microscopic mass diffusion determines the local 
liquid fraction and ultimately the macroscopic 
behavior of the solidification. Many existing macro- 
scopic solidification models [7] employ liquid fraction 
temperature relationships based on simplified limiting 
treatments of microsegregation, principally the Scheil 
and lever rules [16]. An objective of microsegregation 
modeling is to arrive at a more comprehensive treat- 
ment of the coupled heat and mass transfer during the 
local solidification between secondary dendrite arms. 
This process can be described on considering a one- 
dimensional plane front solidification controlled by 
coupled heat and mass diffusion. In this respect the 
problem can be readily identified as a variation of the 
well documented binary alloy problem [17-221. The 
key ingredients in the microsegregation problem, 
which separates it from other binary alloy problems 
are : 
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NOMENCLATURE 

c specific heat T,(r) time dependent temperature at .Y = 0 
C composition u rate of interface movement 
CO nominal composition of the alloy V chemical activity 

f 
mixture mass diffusion coefficient X coordinate in the real domain 
local liquid mass fraction X(r) length of the expanding real domain 

F, solidus curve Y solvent in a Y-Z binary alloy 
Fl liquid curve Z solute in a Y-Z binary alloy. 
Y local liquid volume fraction 
H enthalpy Greek symbols 
AH latent heat of fusion u thermal diffusivity 
ko partition coefficient I- Gibbs-Thomson coefficient 
K mixture thermal conductivity I’ interracial surface energy 
ml representative liquidus slope A2 secondary dendritic arm spacing 

Y prescribed heat flux 4 coordinate in the transformed domain 
s(d position of the phase front in the real A; space step in the transformed domain 

domain P mass density of the alloy. 
S” convective source term in the heat 

transfer equation Subscripts 
SC convective source term in the mass Al aluminum 

transfer equation cu copper 
t time eut eutectic 
1s final solidification time e, w location of control volume interface 
At time step I liquid 
T temperature P, E, W location of node point 
T, fusion temperature S solid. 
T, initial temperature 
T 14 liquidus temperature Superscript 
T sol solidus temperature old old value. 

(I) The size of the domain is at the microscopic In developing a model to describe the above system 
level, i.e. half the secondary arm spacings, X(l), Fig. 
l(b). In other binary alloy problems [17-221 no 
explicit length scale is given. 

(2) The secondary dendrite arm spacings expand 
as the solidification proceeds. This phenomena of 
‘coarsening’ occurs by ‘melting back’ or breaking off 
(‘necking’) [23] of some of the arms. Thus the dendrite 
arm spacing and likewise the microsegregation solu- 
tion domain X(f) is not fixed but changes with time, 
Fig. l(c). 

2.2. The microsegregation model 
Consider a binary alloy (e.g. aluminum-copper) 

contained in the expanding domain 0 < x < X(t), Fig. 
l(b). Initially the alloy is in the liquid state with a 
uniform composition Co (wt % of Z in Y) and a 
uniform temperature Ti > T,, (the temperature cor- 
responding to Co on the liquidus line of the phase 
diagram, Fig. 2). At time t = 0, the temperature at 
x = 0, is lowered below the solidus temperature TS,,. 
At later times, I > 0, the domain 0 < x < X(t) is sep- 
arated into distinct solid and liquid fractions, with the 
solid/liquid interface x = s(t) < X(t) moving to the 
right. 

the following assumptions are made : 

(I) Heat and mass transfer are controlled by 
diffusion alone. Note that in many systems the heat 
diffusion will be much more rapid than the mass 
diffusion [16] and as a result treatment of the heat 
diffusion can be neglected [l2-141. To maintain gen- 
erality, however, in the development of the governing 
equations and the corresponding solution approach, 
diffusion of heat will be considered. 

(2) The interface, s(t), between the solid and the 
liquid is sharp and nearly planar, i.e. the smallest 
identifiable length scale in the mushy region is the 
secondary arm spacing. Previous binary alloy solu- 
tions presented by Wilson et al. [19, 201 have paid 
great attention to the assumption of a plane front. In 
their analysis they have shown that in some situations, 
although a mathematically well posed model results, 
the assumption of a plane front is not physically 
reasonable. In the context of the microsegregation 
problem, however, such concerns are, in general, 
unfounded. In essence, due to the scale of the problem, 
additional scale effects (e.g. surface energies associ- 
ated with curvature) become important [l6]. These 
effects, not considered by Wilson et al., usually prevent 
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I- MUSHY ZONE LIQUID 

COLUMNAR 

DENDFWIE 

I -100 microns 

Eutectic Phase 

1 c Schematic of the dendrite 

arm coarsening 
- - 

l- X 

1 b The solution domain 
FIN. I. Schematic of a mushy region showing dendrite arm coarsening and microsegregation solution 

domain. 

the formation of morphologies with a smaller length dus curves of the phase diagram, I<,, the equilibrium 
scale than the secondary arms. In the systems studied partition coefficient and the subscripts s and I stand 
in this paper, the assumption that the secondary arms for the solid and liquid phases. respectively. 
are the smallest length scale, at least for the majority 
of the sohdification. can be supported by both exper- 
imental observations, see Fig. 4.6 in ref. [16], and 
theoretical arguments based on a stability analysis 
[16, 24, 251. This last feature will be demonstrated in 
Section 4. 

(3) Equilibrium is maintained at the solid/liquid 
interface s = s(l), i.e. 

T = F,(C,) = F,(C,) (1) 
and 

c, = k,C, (2) 
where T is temperature, continuous across the inter- 
face, C concentration, 4 and F, the liquidus and soli- 

(4) In previous binary alloy models [8-13, 15, 17- 
221 straight solidus and liquidus lines and a constant 
partition ratio are assumed. The current work, 
however. follows Roosz CI 01. [14] and allows for a 
curved solidus and liquidus. see Fig. 2. and a partition 
coefficient, k,, which is dependent on the solid/liquid 
interface temperature. 

(5) At any point in time the integrated solute con- 
tent in 0 < x < X(r) remains at the initial composition 
of C,, i.e. 

1 I- f-*1:, f-.w 1 

where p is the density of the alloy. 
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COMPOSITION OF COPPER (MASS %) 

FIG. 2. Phase diagram for aluminumxopper system 

(6) To ensure mass conservation, implied in 
assumption 5, as the domain expands, the liquid con- 
tained in x > X(t) is assumed to be at the initial con- 
centration and liquidus temperature, i.e. 

(7) 

0 

0 

l 

C = Co and T = T,is in x > X(t). 

In terms of physical properties : 

The thermal conductivity, K, and specific heat, 
c, are constant within a phase but dis- 
continuous across the phase interface. 
The liquid mass diffusivity, D,, is constant and 
the solid mass diffusivity, D,, is a function of 
temperature. Further, they are discontinuous 
across the interface. 
Compositional variations in the latent heat AH 
[26] are neglected. The density p is assumed to 
be a function of composition alone, i.e. 

P= (4) 

where pz and py are the densities of solute Z 
and solvent Y. 

Note that a compositionally dependent density will 
jump across the solidification interface. Convection 
effects resulting from this density difference, however, 
will be neglected. 

(8) A key parameter in the model is the nature of 
the arm coarsening. In this work the arm coarsening 
model proposed by Roosz and co-workers [14] based 
on the theoretical treatment by Kattamins et al. [23], 
will be used, i.e. 

[X(t)]’ = 13.125 (5) 

where 

M= YDI T 
m,(l -k”)AHC, 

y is the surface energy per unit area [J m-‘1 and 
m, = (T(-- TJC,,, a representative slope of the liqui- 
dus curve. 

(9) Another critical feature in the model is the ther- 
mal boundary conditions. The mechanism of cooling 
will influence the results. In comparing with exper- 
iments it is important to match the thermal conditions 
to those used in the experiment. In the current work, 
following Battle and Pehlke [ 151, we will be comparing 
with the experiments of Sarreal and Abbaschian [27] 
who use a Bridgemann furnace for directional solidi- 
fication experiments. In this set-up the solution 
domain is pulled down a prescribed temperature 
gradient at a pre-determined rate. This situation can 
be represented in the model on providing a prescribed 
temperature at x = 0. 

2.3. The two-domain governing equations 
The two-domain governing equations derived on 

considering the solid (s) and liquid (I) sides of x = s(f) 
[21] are : 

Heat rransfer 

in 0 ,< x ,< s(t) (6) 

in s(t) ,< x < X(t). (7) 

The temperature at x = 0 is prescribed (see assump- 
tion 9) 

T(0, t) = T,(t) = T,, -cooling rate * I 

and at the symmetry line x = X(t), the domain is 
insulated, i.e. 

Kdr = 0. 
ax 

Mass transfer 

awl) 
at 

in 0 < x < s(r) (8) 

in s(t) < x G X(t) (9) 

with 

ac 0 ax= 
at x = 0 and X(t) (see assumption 5). 

In the above equations the temperature, T, and 
concentration, C, at the solid/liquid interface x = s(t), 
are coupled by the equilibrium constraints, equations 
(1) and (2). In addition, additional heat and mass 
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balance boundary conditions are required at x = s(t) 
[21, 281, namely 

where the densities on the right-hand side of equa- 
tions (10) and (11) are calculated on the solid side of 
the interface. 

2.4. Previous solutions 
With a fixed domain size (i.e. X = a constant) and 

constant density, the above equations are essentially 
those of the ‘classical’ binary alloy problem [21]. In the 
case of a semi-infinite domain an analytical similarity 
solution, due to Rubinstein [ 171, is available. A range 
of fixed domain numerical solutions have also been 
presented [ 18-221. For example, based on an enthalpy 
formulation, Voller [22] uses a fixed grid ‘node jum- 
ping’ solution which produces results in very close 
agreement with the analytical solution, in particular 
sharp interface jumps in the concentration and 
enthalpy fields show no signs of numerical smearing. 

Previous attempts at modeling the micro- 
segregation problem with arm coarsening [12-l 41, 
made the additional simplifying assumptions of (1) an 
isothermally cooling domain (i.e. a uniform domain 
temperature at all times) and (2) complete solute mix- 
ing in the liquid phase. These assumptions, effectively 
reduce the four diffusion transport equations (equa- 
tions (6)-(9)) to a single equation describing the mass 
diffusion in the solid phase. Heat transfer is simply 
dealt with on performing a transient heat balance 
based on prescribing a heat flux at x = 0 [12-141. In 
these models, however, the mass balance condition, 
equation (11) still needs to be satisfied requiring that 
the front x = s(t) is tracked. Ogilvy and Kirkwood 
use an interpolating front tracking method [29] to fol- 
low the solid/liquid front, Roosz et al. [14] employ a 
deforming space grid and time step to ensure that the 
front always coincides with a grid point. 

Recently, Battle and Pehlke [15] have presented a 
microsegregation arm coarsening model based on the 
full governing equations (equations (6)-( 11)) in which 
the above simplifying heat and mass transfer assump- 
tions are not made. In this model the tracking of the 
front and incorporation of the heat and mass balance 
conditions (equations (10) and (11)) is achieved 
using the invariant imbedding approach [30]. The 
expansion of the domain is dealt with on adding in 
new elements at the nominal composition Co. 
Although this model produces excellent agreement 
with a range of experiments a major drawback is 
the ‘excessive’ number of grid points, of the order of 
100000, required to maintain solute mass con- 
servation in the expanding domain. These grid sizes 

result in a large computational cost (up to several 
days on an Apollo domain DN 4000 work station 
[I 51). Such computation times severely limit the utility 
of the model. 

3. A NEW MICROSEGREGATION MODEL 

An objective of the microsegregation model 
developed in this work is to arrive at a more efficient 
numerical treatment of the full heat and mass transfer 
equations. 

3. I. Transformed equations 
Two of the major numerical difficulties in solving 

the governing equations (6)-( I 1) is in dealing with the 
moving boundaries, i.e. 

(1) the solid/liquid interface x = s(t) < X(f) at 
which the heat and mass balance condition, equations 
(10) and (1 I), need to be satisfied, and 

(2) the right-hand boundary of the expanding 
domain, x = X(l). 

In the method proposed in this paper both of these 
problems are overcome on reformulation of the 
governing equations. The aim is to arrive at a govern- 
ing formulation which can be treated with a fixed 
numerical space grid, i.e. one in which no special 
numerical features are introduced to deal with either 
of the moving boundaries. 

The numerical problems associated with the heat 
and mass balance conditions are dealt with on writing 
the equations in a conservation form [18, 21, 221. In 
the heat equation an enthalpy, H, is defined as 

where 

H = pc,T+6H (12) 

6H = pf[(c,-cC,)T+AH] 

and J is the local liquid mass fraction which has a 
step change from 0 to 1 at the solid/liquid interface. 
Note that, like the concentration C, enthalpy H is 
discontinuous at x = s(t). In the concentration equa- 
tion a variable V, the ‘chemical activity’ [18, 221, is 
defined as 

CS? x < s(r) 
v= 

k,,c,, X > S(t) ’ 
(13) 

Note that, like the temperature T, chemical activity V 
is continuous at x = s(t). With these new variables 
single domain transport equations can be written, 
namely 

aH-b KdT 
( > dt- ax ax 

00 a 
--‘ax p*g at ( > 

(14) 

(15) 

where the mixture thermal conductivity is determined 
from 
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K=gK,+(l-g)K, 

and the terms pD and pC arc given by 

g represents the local liquid volume fraction (0 for 
fully solid to I for fully liquid). Equation (14) is the 
well-known enthalpy formulation [21]. Introduction 
of the variable V, has created a concentration 
equation, equation (15), which can be regarded as an 
enthalpy equation analog. In using these conservative 
one-domain ‘enthalpy’ formulations there is no need 
to explicitly satisfy the heat and mass balance con- 
ditions on x = s(l). Other boundary conditions on the 
problem, however, remain the same, in particular the 
temperature, T, and chemical activity field. V, must 
still satisfy the equilibrium constraint, equation (I), 
at x = s(t). 

Solving equations (14) and (15) along with the 
appropriate boundary conditions would still require 
special treatment of the expanding domain boundary 
s = X(t). Some authors [12, 151 adjust the size of 
the domain as the calculation continues on adding in 
additional elements at the nominal concentration, Co, 
and initial temperature, T,. Others [13, 141 keep a fixed 
number of elements and adjust the grid size and time 
step as the calculation proceeds. In this paper the 
problem is ‘by-passed’ by transforming the expanding 
domain 0 < .Y < X(f) into a fixed domain 0 < 5 < I 
by means of a Landau [29, 311 transformation. On 
using the coordinate system 

and making appropriate transformations [29, 3 11, the 
partial differential equations (14) and (15) respectively 
become 

and 

(18) 

These equations are more complex than the equa- 
tions in the ‘real domain’ (equations (14) and (15)) 
in that convective terms which account for domain 
expansion in the real space are included. A major 
advantage, however, is that the equations can be 
numerically solved on a fixed space grid using stan- 
dard finite difference or finite element discretizations. 
In the authors’ knowledge an enthalpy like for- 
mulation and the Landau transformation has not pre- 

viously been used in the modeling of micro- 
segregation. 

3.2. The numerical discretization 
The domain 0 < r < I is subdivided into equally 

spaced control volumes, size At, which are arranged 
as shown in Fig. 3. On this grid a fully time implicit 
(time step AI) central difference discretization of equa- 
tions (17) and (18) is carried out resulting in the fol- 
lowing equations : 

Heat ~ransfir 

(ppc,+l-:+l-:)Tp = {p”pld~,TOpld+rwHTW+reHTE 

+ (cSH”‘~ -6H)-SH} (19) 

where 

with a similar definition for l-t 

~HP = PVP(CI-C~)TP+AW 
and 

&,H,+<,H, 
2 

Mass transfer 

(pp~p+pwr:+per:)~P = {p;Vgdv;ld 

+p,r:v,+p,r:v,-.scj (20) 

where 

D,+D, At r,c= 2 -. [ 1 X'(A{)*' 

with a similar definition for l-z 

lpc &p]; 

with a similar definition for pw 

“= EpVp + UOO-~PVP) 

Pcu PAI J 

FIG. 3. Interior control volumes in the solution domain. 
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and EP = (1 -gP) + (g,/k,). The subscripts w and e 
stand for west and east control volume interface while 
W and E stand for the west and east node points, 
respectively. 

Note that the convective terms in equations (17) and 
(18) are approximated by a central difference replace- 
ment. 

3.3. Node jumping scheme 
The algorithm used to solve the above equations is 

the node jumping scheme proposed by Voller [22]. In 
this approach a fixed uniform numerical grid is used 
with a variable time step (which needs to be deter- 
mined) such that the phase front moves from one 
node point to the next in each time step. It is important 
to recognize that at any given point in time when 
the solidification front is on node N, the local liquid 
fraction gi is given by 

gi = 

1 

1, i>N 

0.5, i = N. (21) 

0, i<N 

Hence with node jumping the coefficients in equations 
(19) and (20) can be readily evaluated. The key is to 
choose the required time step for any given jump. This 
is achieved in an iterative fashion. For illustration 
consider the jump from node N to N+ I. At first the 
liquid fraction field is fixed at the values given by 
equation (21) and then the required time step is repeat- 
edly updated until the predicted temperature and com- 
position fields are in equilibrium at the interface, i.e. 

T Iv+ I = F,(V,+ I). (22) 

Use of a Newton update achieves convergence in 5-8 
steps. 

The node jumping solution procedure is executed 
until the liquid ahead of the solid/liquid interface 
reaches the eutectic composition. At this point the 
calculation is terminated and the current length X(r) 
is taken as the final arm spacing. The remaining liquid 
in the domain is assumed to change state isothermally 
forming the so-called ‘non-equilibrium eutectic’. 

4. RESULTS AND DISCUSSION 

The current model is validated with the exper- 
imental predictions for the non-equilibrium eutectic 
and arm spacings reported by Sarreal and Abbaschian 
[27]. In these experiments an aluminum 4.9 wt% cop- 
per alloy was directionally solidified at different 
cooling rates. The experimental cooling conditions 

and results are given in Table I and the associated 
physical and thermal properties are given in Table 2 
[14-l 61. To account for the non-linear phase diagram, 
see Fig. 2, the solidus and the liquidus curves are 
approximated on fitting piecewise linear segments of 
the form F, = a,C,+b, and F, = a,C,+b,, to the data 
in Table 3. The interface temperature dependent par- 
tition coefficient at every point in the calculation is 
obtained on suitable rearrangement of these curve fits. 

4. I . Model comparisons with experiments 
In comparing the ‘Landau node jumping’ model 

with the experiments reported by Sarreal and Abba- 
schian [27] a fixed uniform grid of 100 control volumes 
was used. Table 4 compares the predicted and exper- 
imental eutectic fractions. At all but the highest 
cooling rate, agreement between the experimental and 
the numerical results is excellent. Note that, due to 
the decrease in time available for back diffusion, as the 
cooling rate increases the predicted eutectic fraction 
increases. At this time the authors attribute the 
sudden ‘turn down’ in the experimental results at 
the highest cooling rate to undercooling. The physical 
phenomena included in the current model will not 
allow for such a behavior, i.e. as the cooling rate 
increases the predicted eutectic will increase towards 
the diffusion controlled limit. This limit can be found 
on using a ‘Scheil’ assumption, i.e. simulating infi- 
nite liquid mass diffusion and no solid mass diffusion 
on using a relatively large value for the liquid mass 
diffusion ( 10m4) and a relatively small constant value 
(IO- 2”) for the solid mass diffusion. The value for this 
limit is compared with the given predictions in Table 4. 
The Landau model was then implemented on making 
additional simplifying assumptions of constant par- 
tition coefficient (k, = 0.14) and a fixed arm spacing. 
This result, see column 5 in Table 4, provides an upper 
limit for the prediction of the eutectic. It can also be 
used to validate the operation of the model since under 
these simple assumptions the eutectic formed can also 
be calculated with the well-known analytical Scheil 
equation [ 161, namely 

0 

IlIP,- I) 
9 max = 0.8047 2 (23) 

0 

where 0.8047 is the mass to volume conversion factor. 
With equation (23), the predicted g”“” = 8.7 which is 
within 0.5% of the model prediction of 8.66. 

Further insight into the role of the back diffusion 
in the solid can be gained on comparing the predicted 
solutal profile with the profile obtained when the 
model is run under the Scheil assumption. Figure 4 
shows such a comparison, at various times, for sample 
1. When solid diffusion is included in the model the 
transient nature of the solute profile is significant. On 
the other hand, if solid diffusion is removed (the Scheil 
assumption), the solute profile remains fixed. 

In addition to predicting the eutectic formed, the 
proposed model can also provide an estimate of the 
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Table I. Experimental conditions 

Cooling Solidification Measured Growth rate, 
Sample rate time, I, arm spacing, G = ().7/2)/i, 
number (K s-‘) 6) A2 Otm) (pm s-‘) 

1 0.1 980 91 0.0464 
2 I .05 93.3 46 0.2465 
3 11.25 8.72 23 1.3188 
4 65 1.51 14 4.6358 
5 187 0.52 10 9.6154 
6 1700 0.058 5.4 46.5517 

Measured 
eutectic 

(vol. %)t 

5.32 
6.23 
6.76 
7.09 
7.44 
6.08 

t Calculated from ref. [l5], using equation (4). 

Table 2. Physical properties of aluminum-copper alloy [I4161 

Property Notation Value Units 

Thermal conductivity 

Specific heat 

Latent heat 
Density of Al 
Density of Cu 
Liquid mass diffusivity 
Solid mass diffusivity 

Eutectic composition 
Eutectic temperature 
Fusion temperature 
Liquidus temperature 
Surface energy per unit area 
Gibbs-Thomson coefficient 
Liquidus-solidus range at C, 

K, 
Kl 
c I 
Cl 
AH 
Pv = PN 
Pz = Pcu 
4 
DS 

153 
77 

766 
1179 

4.28eS 
2550 
7670 

5eC” 
0.29eCJ 

exp(-15610/T) 
33.2 

821.2 
933.2 
921.73 

0.093 
lo-’ 
85.73 

W m-’ K-’ 

J kg-’ K-’ 

J kg-’ 
kg m-’ 
kg m-’ 
,z s- I 
m’s-’ 

mass % 
K 
K 
K 
J mz 
mK 
K 

Table 3. Phase diagram data [14] 

T WI 933.2 922.0 910.8 899.6 888.4 877.2 866.0 854.8 843.6 832.4 821.2 

c, (wt%) 0.0 4.8 8.9 12.3 15.5 18.8 21.8 24.8 27.5 30.2 33.0 
c, (wt%) 0.0 0.56 I.13 1.67 2.26 2.82 3.39 3.95 4.52 5.08 5.65 

Table 4. Comparison of measured and predicted eutectic (in vol. %) 

Diffusion Scheil limit 
controlled D = lo-= 

Measured Predicted limit D, = lb, k, =‘0.14 
Sample amount of amount of D, = IO-” and and fixed 
number eutectic eutectic D, = lO-4 arm spacing 

1 5.32 5.32 7.49 8.66 
2 6.23 6.25 7.49 8.66 
3 6.76 6.85 7.49 8.66 
4 7.09 7.11 7.49 8.66 
5 7.44 7.22 7.49 . 8.66 
6 6.08 7.36 7.49 8.66 

characteristic size of the microstructure, i.e. the sec- 4.2. Sensitivity analysis 
ondary arm spacings. Table 5 shows comparisons The results from the model could be sensitive 
between the predicted and experimental arm spacings. to a number of the parameters and assumptions. 
The agreement is excellent providing additional evi- The effects of changing various assumptions on 
dence to the suitability of the general coarsening predictions of eutectic fraction are recorded in 
model of Roosz et al. [14], i.e. equation (5). Table 6. 
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FIG. 4. Comparison of solutal profile in the solid for Sample 
I at three different times. The reference line is determined by 

assuming no mass diffusion in the solid (D, = IO-“). 

Table 5. Comparison of measured and predicted arm spacing 

Sample number 

Measured 
arm spacing 

(w) 

Predicted 
arm spacing 

ON 

I 91 96.5 
2 46 44.1 
3 23 20 
4 14 11.14 
5 10 7.83 
6 5.4 3.75 

Coarsening. If  the empirically based coarsening 
model used by Battle and Pehlke, i.e. 

1, = 12 78t0.29 .- 

is used in place of equation (S), very accurate arm The model predictions, presented above, will only 
spacing predictions are obtained but the fraction be physically valid if the assumption of a near planar 
eutectic is underpredicted (see column 4 in Table 6). solid/liquid interface, i.e. the secondary dendrite arm 
A good arm spacing prediction is to be expected since spacing is the smallest identifiable length scale, is 
equation (24) essentially is an empirical fit. The under- valid. The validity of this assumption can be shown 
prediction of the eutectic in this case is due to the from both experimental observation and theoretical 
fact that equation (24) does not consider the dynamic argument. 

coarsening behavior [14]. The coarsening model, i.e. 
equation (S), however, does include the dynamic 
coarsening effects. Further, if a fixed arm spacing (the 
experimental value) is used throughout the calculation 
(i.e. coarsening effects are not included) the eutectic 
fraction is significantly overpredicted (see column 5 
in Table 6). 

Cooling condition. One alternative to a prescribed 
temperature at 5 = 0 is a prescribed flux 4. Column 6 
in Table 6 gives the results for the case of a constant 
flux (chosen in each case to match the experimental 
solidification time). There is a significant over- 
prediction in these results. This indicates the need to 
match the cooling condition used in the experiment 
with the one used in the model. Note that in some 
experiments [32] a flux condition may be reasonable. 

Den&y. Assuming a constant density and inter- 
preting the result as volume fraction leads to an over- 
prediction of the volume % eutectic (see column 7 in 
Table 6). This illustrates the need to account for the 
compositional density change when solving in terms 
of mass fraction concentrations. 

Diffusion of heat and mass. As noted in the intro- 
duction many of the previous microsegregation 
models [I 2-141 have made the assumption of infinite 
heat transfer in the domain and infinite liquid mass 
diffusion. In the context of the current experimental 
case such assumptions are valid. The predicted results, 
obtained with the model on assuming an isothermal 
domain cooling at a prescribed rate and infinite (large) 
liquid mass diffusion, are almost identical to the pre- 
dictions reported in column 3 in Table 4. The current 
model, unlike the previous models [ 12-141, however, 
will also be valid in situations where the above 
assumptions cannot be made. 

4.3. Validity of the model 

Table 6. Sensitivity study of eutectic results 

Numerical predictions by changing one 
feature at a time 

Landau 
Measured node 

Sample amount of jumping 
number eutectic model 

I 5.32 5.32 
2 6.23 6.25 
3 6.76 6.85 
4 7.09 7.11 
5 7.44 7.22 
6 6.08 7.36 

tcoarsening equation (24). 

Coarsening model Wi!h a 
constant Mass 
flux (4) density 

Empiricalt Non-coarsening cooling constant 

4.73 5.90 6.87 6.44 
5.85 7.22 7.46 7.62 
6.45 7.98 7.86 8.38 
6.69 8.30 8.04 8.73 
6.77 8.40 8.11 8.88 
6.86 8.54 8.20 9.06 
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Experimental observation. Metallographical exam- 
ination of the final microstructure observed in the 
experiments by Sarreal and Abbaschian [33], showed 
no signs of tertiary arms, a clear indication that the 
secondary arm has not broken down. 

Theoretical argument. In all of the results reported 
in this work, small constitutional undercoolings (i.e. 
situations in which the equilibrium temperature of the 
liquid ahead of the solidification interface is greater 
than the actual temperature) were observed. Although 
necessary, constitutional undercooling is not a 
sufficient condition for a plane front breakdown [ 161. 
At the scale of the microsegregation problem under- 
toolings associated with surface tension effects will 
inhibit a front breakdown and the near plane front 
assumption will be valid. This can be demonstrated 
by showing that the opposing assumption that the 
front will breakdown is not physically reasonable. If 
a front breakdown were to occur, then Langer and 
Muller-Krumbhaar [l6, 241 (using the arguments 
based on Mullins-Sekerka stability analysis [16, 251) 
suggest that the characteristic length scale of the 
resulting morphology will be given by 

R, = 27~ 
J( > 

= 
CAT, 

where R, can be viewed as the radius of curvature of 
a dendrite tip. Values of this characteristic length scale 
for the current system, calculated from the appro- 
priate data in Tables 1 and 2, are compared with the 
measured secondary arm spacings in Table 7. This 
comparison indicates that the characteristic size of the 
morphology resulting from the breakdown will be of 
the same order, if not larger, than the characteristic 
size (tip radius) of the secondary arms themselves, a 
physically unreasonable situation. Hence, the assump- 
tion that the front breaks down leads to a physical 
contradiction, from which it can be concluded that 
the original assumption of a near plane front is valid. 

4.4. Numerical and computational considerations 
The choice of 100 grid points was determined on 

carrying out a grid dependence study. Table 8 reports 
the results of this study and clearly show that the 
predictions are independent of the grid size. The cho- 
ice of 100 grid points is considerably less than the 
100000 reported by Battle and Pehlke [15]. These 

Table 7. Analysis of the near plane front assumption [16,24, 
251 

Sample Dendrite tip radius, Measured arm spacing 
number 4 (w) Ocm) 

1 70 9l\ 
2 31 46 
3 13 23 
4 I 14 
5 5 10 
6 2.2 5.4 

Table 8. Grid dependence study 

Sample number 
Grid 

density I 2 3 4 5 6 

25 5.55 6.12 6.83 7.12 1.23 7.38 
50 5.33 6.28 6.81 7.03 7.15 7.3 I 

100 5.32 6.25 6.85 7.11 1.22 1.36 
200 5.31 6.25 6.86 7.13 1.24 1.39 

authors required this number of grid points to reduce 
the mass conservation errors (i.e. the difference 
between the nominal composition C,, = 4.9 and the 
integrated solute composition (see assumption 5)) 
which were a feature of their model. The current 
model conserved mass for all grid densities; in fact, 
the mass conservation errors were always within 
10e5%. In the model by Battle and Pehlke [15] even 
at the highest grid densities, mass errors were in the 
range of 3%. 

In terms of computational performance the cur- 
rently proposed model is highly efficient. For the full 
model, CPU times are on the order of 2 min on a 25 
MHz PC 386 with an Intel 80387 Math co-processor. 
In comparison, Battle and Pehlke [15] report work- 
station CPU times up to several days. 

5. CONCLUSIONS 

The aim of this paper has been to develop a micro- 
segregation arm coarsening model which is general 
in nature, provides accurate solutions on comparison 
with experiments, and is efficient. The proposed 
model, based on enthalpy like variables and utilizing 
the Landau transformation [29,31] can be considered 
to be as general as any of the existing models [ 12-151. 
The enthalpy variables account for the movement of 
the solid/liquid interface and the Landau trans- 
formation accounts for the expansion of the solution 
domain. Together these two approaches allow for a 
fixed space grid solution of the governing equations 
with no explicit treatment of moving boundaries. 
None of the previous microsegregation arm coars- 
ening models have used enthalpy variables or a 
Landau transformation. The characteristic size of 
the microstructure and microsegregation predictions 
obtained with the proposed numerical model, at low 
and moderate cooling rates, compare well with exper- 
iments. In *addition, the CPU requirement was a 
minute fraction of that required by the most recently 
proposed alternative model [ 151. 

A brief study of the effects of the assumptions used 
in the model indicated that in some cases additional 
simplifying assumptions could be made. In particular, 
infinite heat transfer and infinite liquid mass transfer 
could be assumed with no loss of accuracy. In other 
cases, however, the nature of the assumptions could be 
critical. Examples include the coarsening and cooling 
mechanisms (which sould be related to the exper- 
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iment). A more extensive investigation of the effects of 
these assumptions is currently underway. Additional 
work will also include the investigation into the use 
of the proposed model as a micro component of a 
micro-macro model. 
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